Back

ⓘ ಅಣು ತಂತ್ರಜ್ಞಾನ. ಪರಮಾಣುವಿನಲ್ಲಿ ಅಡಕವಾಗಿರುವ ಶಕ್ತಿಯನ್ನು ವಿವಿಧ ಉದ್ದೇಶಗಳಿಗಾಗಿ ಬಳಸುವ ತಂತ್ರಜ್ಞಾನಕ್ಕೆ ಅಣು ತಂತ್ರಜ್ಞಾನವೆನ್ನುತ್ತಾರೆ. ಇದರ ಉಪಯೋಗವನ್ನು ಮುಖ್ಯವಾಗಿ ಸೈನಿಕ ಹಾಗೂ ಸಾಮ ..




                                               

ಉನ್ನತ ಕಾರ್ಯಸಾಮರ್ಥ್ಯದ ಲಿಕ್ವಿಡ್ ಕ್ರೊಮ್ಯಾಟೋಗ್ರಫಿ

ಉನ್ನತ ಕಾರ್ಯಸಾಮರ್ಥ್ಯದ ಲಿಕ್ವಿಡ್ ಕ್ರೊಮ್ಯಾಟೋಗ್ರಫಿ ಯ ಅಥವಾ ಯು ಲಂಬಸಾಲು ಕ್ರೊಮ್ಯಾಟೋಗ್ರಫಿಯ ರೂಪದಲ್ಲಿ ಇದ್ದು, ಇದನ್ನು ಸಾಧಾರಣವಾಗಿ ಜೀವರಸಾಯನ ಶಾಸ್ತ್ರ ಮತ್ತು ವಿಶ್ಲೇಷಣಾ ರಸಾಯನ ಶಾಸ್ತ್ರದಲ್ಲಿ ಸಂಯುಕ್ತಗಳನ್ನು ಅವುಗಳ ಇಡಿಯೊಸಿಂಕ್ರಾಟಿಕ್ ಪೊಲಾರಿಟಿಸ್ ಮತ್ತು ಪರಸ್ಪರ ಕ್ರಿಯೆಯ ಆಧಾರದ ಮೇಲೆ ಲಂಬಸಾಲು‌ಗಳ ಸ್ಥಾಯಿ ಹಂತದೊಂದಿಗೆ ಬೇರ್ಪಡಿಸಲು, ಗುರುತಿಸಲು ಮತ್ತು ಪ್ರಮಾಣಿಕರಣಗೊಳಿಸಲು ಉಪಯೋಗಿಸಲಾಗುತ್ತದೆ. HPLC ಯು ವಿವಿಧ ಮಾದರಿಯ ಸ್ಥಾಯಿ ಹಂತಗಳನ್ನು ಉಪಯೋಗಿಸಿಕೊಳ್ಳುತ್ತದೆ. ಅವುಗಳಲ್ಲಿ ಲಂಬಸಾಲು ಮುಖಾಂತರ ಮೊಬೈಲ್ ಹಂತವನ್ನು ಮತ್ತು ಅನಲೈಟ್‌ ಅನ್ನು ಚಲಿಸುವಂತೆ ಮಾಡುವ ಪಂಪ್, ಮತ್ತು ಆನಲೈಟ್‌ಗೆ ಧಾರಣಶಕ್ತಿಯ ಸಮಯನ್ನು ಪೂರೈಸುವ ಡಿಟೆಕ್ಟರ್ ಅನ್ನು ಉಪಯೋಗಿಸುತ್ತದೆ. ಡಿಟೆಕ್ಟರ್ ಇತರ ವಿಶಿಷ್ಟ ಗುಣಗಳ ಮಾಹಿತಿಯನ್ನು ...

                                               

ಬಯೋಪಾಲಿಮರ್

ಬಯೋಪಾಲಿಮರ್‌ ಗಳು ಜೀವಿಗಳಿಂದ ಉತ್ಪಾದಿಸುವ ಪಾಲಿಮರ್‌ಗಳಾಗಿವೆ. ಸೆಲ್ಯುಲೋಸ್, ಪಿಷ್ಟ, ಚಿಟಿನ್, ಪ್ರೋಟೀನುಗಳು, ಪೆಪ್ಟೈಡ್‌ಗಳು, ಡಿಎನ್‌ಎ ಮತ್ತು ಆರ್‌ಎನ್‌ಎ‍ಗಳು ಬಯೋಪಾಲಿಮರ್‌ಗಳಿಗೆ ಉದಾಹರಣೆಗಳು, ಇದರಲ್ಲಿ ಕ್ರಮವಾಗಿ ಮಾನೊಮರ್‌ನ ಘಟಕಗಳು, ಶರ್ಕರ, ಅಮೈನೊ ಆಸಿಡ್‌ಗಳು, ಮತ್ತು ನ್ಯೂಕ್ಲಿಯೋಟೈಡ್‌‌ಗಳಾಗಿವೆ. ಸೆಲ್ಯೂಲೋಸ್‌ಗಳು ಸಾಧಾರಣವಾದ ಬಯೋಪಾಲಿಮರ್‌ಗಳಾಗಿವೆ ಹಾಗೆಯೇ ಜಗತ್ತಿನಲ್ಲಿಯೇ ಅತ್ಯಂತ ಜಟಿಲವಾದ ಜೈವಿಕ ಸಂಯುಕ್ತವಾಗಿವೆ. ಪ್ರತಿಶತ 33ರಷ್ಟು ಸಸ್ಯಗಳ ಭಾಗವು ಸೆಲ್ಯೂಲೋಸ್ ಆಗಿದೆ. ಉದಾಹರಣೆಗೆ, ಹತ್ತಿಯಲ್ಲಿರುವ ಸೆಲ್ಯೂಲೋಸ್‌ ಪ್ರಮಾಣ ಶೇ.~90 ರಷ್ಟಿದ್ದರೆ ಮರದಲ್ಲಿರುವ ಸೆಲ್ಯೂಲೋಸ್‌ ಪ್ರಮಾಣವು ಶೇ. ~ 50 ರಷ್ಟಿರುತ್ತದೆ. ಕೆಲವು ಬಯೋಪಾಲಿಮರ್‌ಗಳು ಮಣ್ಣಿನಲ್ಲಿ ಲೀನವಾಗುವ ಜೈವಿಕ ವಿಘಟನೀಯವಾಗಿದೆ.ಆದ್ದರಿಂದಲೇ ಅವುಗ ...

ಅಣು ತಂತ್ರಜ್ಞಾನ
                                     

ⓘ ಅಣು ತಂತ್ರಜ್ಞಾನ

ಪರಮಾಣುವಿನಲ್ಲಿ ಅಡಕವಾಗಿರುವ ಶಕ್ತಿಯನ್ನು ವಿವಿಧ ಉದ್ದೇಶಗಳಿಗಾಗಿ ಬಳಸುವ ತಂತ್ರಜ್ಞಾನಕ್ಕೆ ಅಣು ತಂತ್ರಜ್ಞಾನವೆನ್ನುತ್ತಾರೆ. ಇದರ ಉಪಯೋಗವನ್ನು ಮುಖ್ಯವಾಗಿ ಸೈನಿಕ ಹಾಗೂ ಸಾಮಾಜಿಕ ಎಂದು ವಿಂಗಡಿಸಬಹುದು. ಸೈನಿಕ ಉಪಯೋಗದಲ್ಲಿ ಶಸ್ತ್ರಾಸ್ತ್ರಗಳಿಗಾಗಿ ಅಣುಶಕ್ತಿ ಉಪಯೋಗವಾಗುತ್ತದೆ. ಸಾಮಾಜಿಕ ಕ್ಷೇತ್ರದಲ್ಲಿ ಪ್ರಮುಖವಾಗಿ ವಿದ್ಯುತ್ ಉತ್ಪಾದನೆ, ವೈದ್ಯಕೀಯ ಬಳಕೆ ಮತ್ತು ಆಹಾರ ಸಂಸ್ಕರಣೆಗೆ ಈ ತಂತ್ರಜ್ಞಾನವನ್ನು ಬಳಸುತ್ತಾರೆ. ಇತ್ತೀಚಿಗೆ, ಈ ತಂತ್ರಜ್ಞಾನವನ್ನು ಬಳಸಿ ವಿಮಾನಗಳನ್ನು ಹಾರಾಡಿಸುವ ಸಂಶೋಧನೆಗಳೂ ನಡೆದಿವೆ.

                                     

1. ದ್ರವ್ಯ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ವಹಿವಾಟು Neutron Interaction with Matter

ನ್ಯೂಟ್ರಾನ್ ಒಂದು ದ್ರವ್ಯಕ್ಕೆ ಢಿಕ್ಕಿ ಹೊಡೆದಾಗ, ನ್ಯೂಟ್ರಾನ್ ಆ ದ್ರವ್ಯದ ಪರಮಾಣುವಿನ ನಾಭಿಯೊಂದಿಗೆ ವಹಿವಾಟು ನಡೆಸುತ್ತದೆ. ನ್ಯೂಟ್ರಾನ್ ಹಾಗೂ ನಾಭಿಗಳಿಗೆ ಅವುಗಳದೇ ಆದ ಒಂದು ಚೈತನ್ಯವಿರುತ್ತದೆ energy level. ಈ ವಹಿವಾಟುಗಳಿಂದ, ಚೈತನ್ಯದ ಮಟ್ಟ ಏರುಪೇರಾಗಿ ಕೆಲವು ಇತರೆ ಪರಿಣಾಮಗಳು ಉಂಟಾಗುತ್ತವೆ. ಆಣುತಂತ್ರಜ್ಞಾನದಲ್ಲಿ ಈ ಪರಿಣಾಮಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳಲಾಗುತ್ತದೆ. ಈ ವಹಿವಾಟುಗಳನ್ನು ಕೆಳಗಿನಂತೆ ಸ್ಥೂಲವಾಗಿ ವಿವರಿಸಬಹುದು.

                                     

1.1. ದ್ರವ್ಯ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ವಹಿವಾಟು Neutron Interaction with Matter ಇನ್-ಎಲ್ಯಾಸ್ಟಿಕ್ ಸ್ಕ್ಯಾಟರಿಂಗ್ inelastic Scattering

ಈ ವಹಿವಾಟಿನಲ್ಲಿ ಒಂದು ನಿರ್ದಿಷ್ಟ ಚೈತನ್ಯವುಳ್ಳ ನ್ಯೂಟ್ರಾನ್ ನಾಭಿಯನ್ನು ಪ್ರವೇಶಿಸುತ್ತದೆ ಆಗ ಆ ನಾಭಿಯ ಚೈತನ್ಯ ಹೆಚ್ಚಾಗುತ್ತದೆ. ಯಾವುದೇ ಪರಮಾಣುವಿನ ನಾಭಿಯು ತಟಸ್ಥ ಮಟ್ಟಿಗಿಂತಾ ತನ್ನ ಚೈತನ್ಯವನ್ನು ಹೆಚ್ಚಾಗಲು ಬಿಡುವುದಿಲ್ಲ. ಇದು ನಿಸರ್ಗದ ಒಂದು ನಿಯಮ. ಹೀಗಾಗ ಕಡಿಮೆ ಚೈತನ್ಯದ ಒಂದು ನ್ಯೂಟ್ರಾನ್ ನಾಭಿಯಿಂದ ಹೊರಬೀಳುತ್ತದೆ. ಉಳಿದ ಹೆಚ್ಚಿನ ಚೈತನ್ಯ ಗ್ಯಾಮಾ- ವಿಕಿರಣದ ಮೂಲಕ ಹೋರಬೀಳುತ್ತದೆ. ಈ ಪರಿಣಾಮವನ್ನು ನ್ಯೂಟ್ರಾನಿನ ಚೈತನ್ಯವನ್ನು ಕಡಿಮೆ ಮಾಡಲು ಉಪಯೋಗಿಸಿಕೊಳ್ಳುತ್ತಾರೆ. ಕೆಲವೊಂದು ಪರಮಾಣು ರಿಯಾಕ್ಟರ್‍‍ಗಳಲ್ಲಿ ನ್ಯೂಟ್ರಾನಿನ ಚೈತನ್ಯವನ್ನು ಕಡಿಮೆ ಮಾಡುವದು ಅತ್ಯವಶ್ಯ. ಈ ಪ್ರಕ್ರಿಯೆಗೆ ನ್ಯೂಟ್ರಾನ್ ಮಂದಕರಿಸುವಿಕೆ Neutron moderationಎಂದು ಕರೆಯುತ್ತಾರೆ. ಈ ರೀತಿ ಚೈತನ್ಯವನ್ನು ಕಡಿಮೆ ಮಾಡುವ ವಸ್ತುವನ್ನು ಮಂದಕಾರಕ Moderator ಎಂದು ಕರೆಯುತ್ತಾರೆ.

                                     

1.2. ದ್ರವ್ಯ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ವಹಿವಾಟು Neutron Interaction with Matter ವಿಕಿರಣಶೀಲ ಗ್ರಹಣ Radiative capture

ಈ ವಹಿವಾಟಿನಲ್ಲಿ ನ್ಯೂಟ್ರಾನ್ ನಾಭಿಯನ್ನು ಪ್ರವೇಶಿಸಿ ನಾಭಿಯ ಚೈತನ್ಯವನ್ನು ಹೆಚ್ಚಿಸುತ್ತದೆ. ಹೀಗೆ ಹೆಚ್ಚಾದ ಚೈತನ್ಯವು ಗ್ಯಾಮಾ ವಿಕಿರಣದ ಮೂಲಕ ಹೊರಬೀಳುತ್ತದೆ. ಗ್ರಹಿಸಲ್ಪಟ್ಟ ನ್ಯೂಟ್ರಾನಿನಿಂದಾಗಿ, ಪರಮಾಣು ತೂಕ ಹೆಚ್ಚಾಗುತ್ತದೆ, ಹಾಗಾಗಿ ಆ ನಾಭಿಯು ಆ ಮೂಲಧಾತುವಿನ ಒಂದು ಐಸೋಟೋಪ್ ಆಗಿ ಪರಿವರ್ತನೆಗೊಳ್ಳುತ್ತದೆ. ಪರಮಾಣು ರಿಯಾಕ್ಟರಿನ ಕಾರ್ಯನಿರ್ವಹಣೆಯಲ್ಲಿ ಈ ಪ್ರಕ್ರಿಯೆಯು ಅತಿಮುಖ್ಯ ಪಾಲನ್ನು ಹೊಂದಿದೆ. ಅವುಗಳಲ್ಲಿ ನ್ಯೂಟ್ರಾನ್ ಗಳ ಸಂಖ್ಯೆಯನ್ನು ಕಡಿಮೆ ಮಾಡುವದು ಒಂದು ಮುಖ್ಯ ಪಾತ್ರ. ಉಳಿದ ವಿವರಣೆಗಳು ಈ ಲೇಖನದ ಪರಿಮಿತಿಯಲ್ಲಿಲ್ಲ.

                                     

1.3. ದ್ರವ್ಯ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ವಹಿವಾಟು Neutron Interaction with Matter ಪರಮಾಣು ರೂಪಾಂತರ Nuclear Transmutation

ಇಲ್ಲಿ ನ್ಯೂಟ್ರಾನ್ ನಾಭಿಯನ್ನು ಸೇರಿದಾಗ ಉಂಟಾಗುವ ಚೈತನ್ಯದ ಏರುಪೇರಿನಿಂದ, ನಾಭಿಯು ಒಂದು ಎಲೆಕ್ಟ್ರಾನ್ ಅಥವಾ ಪೊಸಿಟ್ರಾನ್ ನ್ನು positron ಹೊರಹಾಕುತ್ತದೆ. ಆವಾಗ ಆ ದ್ರವ್ಯದ ಪರಮಾಣು ಸಂಖ್ಯೆ ಬದಲಾಗುತ್ತದೆ. ಪರಮಾಣು ಸಂಖ್ಯೆ ಬದಲಾದಾಗ ಅದು ಬೇರೆಯೇ ಮೂಲಧಾತುವಾಗುತ್ತದೆ. ಹೀಗೆ ಒಂದು ಮೂಲಧಾತು ಇನ್ನೊಂದಾಗಿ ರೂಪಾಂತರವಾಗುತ್ತದೆ. ಇಂದು ನಾವು ವಿಶ್ವದಲ್ಲಿ ನೋಡುವ ಪ್ರತಿಯೊಂದು ನೈಸರ್ಗಿಕ ಮೂಲಧಾತುವೂ ಕೂಡ ಈ ರೀತಿ ರೂಪಾಂತರಗೊಂಡಿದ್ದೆ ಆಗಿದೆ. ಯುರೇನಿಯಮ್ ಲೋಹವು ಸೈಸರ್ಗಿಕವಾಗಿ ದೊರೆಯುವ ಆವರ್ತಕ ಕೋಷ್ಟಕದ periodic table ಕೊನೆಯ ಮೂಲವಸ್ತು. ಯುರೇನಿಯಮ್ ನ ನಂತರ ಬರುವ ಇತರೆ ಮೂಲವಸ್ತುಗಳನ್ನು ಪರಮಾಣು ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಹುಟ್ಟಿಸಬಹುದು. ಈ ರೀತಿ ಹುಟ್ಟಿಸಿದ ಪ್ಲುಟೋನಿಯಮ್ ಅನ್ನು ಬೇರೆ ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಇಂಧನವಾಗಿ ಬಳಸುತ್ತಾರೆ. ಈ ರೀತಿ ಇಂಧನವನ್ನು ಹುಟ್ಟಿಸುವ ಕ್ರಿಯೆಗೆ breeding ಎಂಬುದಾಗಿ ಹೇಳುತ್ತಾರೆ.

                                     

1.4. ದ್ರವ್ಯ ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ವಹಿವಾಟು Neutron Interaction with Matter ವಿದಳನ ಕ್ರಿಯೆ Fission

ಇದು ಒಂದು ಅತ್ಯಂತ ಮುಖ್ಯ ವಹಿವಾಟು. ನ್ಯೂಟ್ರಾನ್ ಪ್ರವೇಶದ ನಂತರ, ಹೆಚ್ಚಿದ ಚೈತನ್ಯವನ್ನು ತಾಳದೇ ನಾಭಿಯು ಒಡೆದು ಹೋಗಿ, ಎರಡು ಚಿಕ್ಕ ಪರಮಾಣುಗಳು ಉಂಟಾಗುತ್ತವೆ. ಪರಿಣಾಮವಾಗಿ ಅಗಾಧ ಶಕ್ತಿ ಹಾಗೂ ಕೆಲ ಮುಕ್ತ ನ್ಯೂಟ್ರಾನ್ ಗಳು ಬಿಡುಗದೆಯಾಗುತ್ತವೆ. ಈ ರೀತಿ ಬಿಡುಗಡೆಯಾದ ಶಕ್ತಿಯನ್ನು ವಿದ್ಯುತ್ ಉತ್ಪಾದನೆಗೆ ಬಳಸಿಕೊಳ್ಳುತ್ತಾರೆ. ಮುಕ್ತ ನ್ಯೂಟ್ರಾನ್ ಗಳು ಮತ್ತೆ ಮುಂದಿನ ವಿದಳನ ಕ್ರಿಯೆಯನ್ನು ನಡೆಸುತ್ತವೆ. ಇದೊಂದು ಸರಣಿ ಪ್ರಕ್ರಿಯೆ chain reaction. ಇಂತಹ ಸರಣಿ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಪ್ರತಿ ಸರಣಿಗೆ ಒಂದು ಪೀಳಿಗೆ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ. ಜಗತ್ತಿನಲ್ಲಿರುವ ಎಲ್ಲಾ ವಿದ್ಯುತ್ ಉತ್ಪಾದನ ಪರಮಾಣು ರಿಯಾಕ್ಟರುಗಳು ಇದೇ ಸಿದ್ಧಾಂತದ ಮೇಲೆಯೇ ಕಾರ್ಯನಿರ್ವಹಿಸುತ್ತಿವೆ.

                                     

2. ಪರಮಾಣು ಇಂಧನ

ಯಾವ ಪರಮಾಣುವಿನ ನಾಭಿಯನ್ನು ಸುಲಭವಾಗಿ ವಿದಳನ ಕ್ರಿಯೆಗೆ ಒಳಪಡಿಸಬಹುದೋ, ಆ ಪರಮಾಣುವಿನ ಮೂಲವಸ್ತುವನ್ನು ಪರಮಾಣು ಇಂಧನವನ್ನಾಗಿ ಉಪಯೋಗಿಸಬಹುದು. ಸಾಮಾನ್ಯವಾಗಿ ನೈಸರ್ಗಿಕವಾಗಿ ದೊರೆಯುವ ಯುರೇನಿಮ್ ಲೋಹವನ್ನು ಇಂಧನವಾಗಿ ಉಪಯೋಗಿಸುತ್ತಾರೆ. ಅಲ್ಲದೇ, ಬೇರೆ ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಹುಟ್ಟಿಸಿದ ಪ್ಲುಟೋನಿಯಮ್ ಲೋಹವನ್ನೂ ಕೂಡ ಇಂಧನವನ್ನಾಗಿ ಉಪಯೋಗಿಸುತ್ತಾರೆ.

                                     

2.1. ಪರಮಾಣು ಇಂಧನ ಯುರೇನಿಯಮ್

ನೈಸರ್ಗಿಕವಾಗಿ ದೊರೆಯುವ ಯುರೇನಿಯಮ್‍ನಲ್ಲಿ ರಾಸಾಯನಿಕ ಚಿನ್ಹೆ: U ಮೂರು ಐಸೋಟೋಪ್‍ಗಳು ಇರುತ್ತವೆ. 233 U, 235 U, 238 U. ಅದರಲ್ಲಿ 233 U ಸುಮಾರು ೦.೦೦೫%ರಷ್ಟು, 235 U ಸುಮಾರು ೦.೭೧%ರಷ್ಟು ಹಾಗೂ ಹೇರಳವಾಗಿ 238 U ಸುಮಾರು ೯೯.೨೮%ರಷ್ಟು ಮಿಶ್ರಣಗೊಂಡಿವೆ. ಇದರಲ್ಲಿ 238 Uನ್ನು ವಿದಳನಕ್ರಿಯೆಗೆ ಒಳಪಡಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ. ಉಳಿದ ಎರಡೂ ಐಸೋಟೋಪ್‍ಗಳನ್ನು ವಿದಳಿಸಬಹುದು. 233 Uನ ಪ್ರಮಾಣ ಅತ್ಯಂತ ಕಡಿಮೆ ಇರುವ ಕಾರಣ, ಸಾಮಾನ್ಯವಾಗಿ 235 Uವನ್ನೇ ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಇಂಧನವನ್ನಾಗಿ ಉಪಯೋಗಿಸುತ್ತಾರೆ. ಹಲವು ಕಾರಣಗಳಿಂದಾಗಿ, 235 Uನ್ನು ವಿದಳನ ಕ್ರಿಯೆಗೆ ಒಳಪಡಿಸಲು ನ್ಯೂಟ್ರಾನ್‍ಗಳ ಚೈತನ್ಯವನ್ನು ಬಹಳ ಕಡಿಮೆಗೊಳಿಸಬೇಕಾಗುತ್ತದೆ. ಅದಕ್ಕಾಗಿ ಸೂಕ್ತ ಮಂದಕಾರಕಗಳನ್ನು ಹಲವು ವೈಜ್ಞಾನಿಕ ಆಧಾರಗಳ ಮೇಲೆ ಆರಿಸಲಾಗುತ್ತದೆ. ಬಹಳಷ್ಟು ಪ್ರಸಂಗಗಳಲ್ಲಿ ಮಂದಕಾರಕದ ಆಯ್ಕೆಯ ಮೇಲೆ ರಿಯಕ್ಟರುಗಳನ್ನು ಹಲವು ಬಗೆಗಳಾಗಿ ವಿಂಗಡಿಸಲಾಗುತ್ತದೆ

                                     

2.2. ಪರಮಾಣು ಇಂಧನ ಮಂದಕಾರಕ ಮತ್ತು ಯುರೇನಿಯಮ್ ಪುಷ್ಟೀಕರಣ Uranium enrichment

ಮಂದಕಾರಕವನ್ನಾಗಿ ಆರಿಸಿಕೊಂಡ ವಸ್ತುವು ಇನ್-ಎಲ್ಯಾಸ್ಟಿಕ್ ಸ್ಕ್ಯಾಟರಿಂಗ್ ಮೂಲಕ ನ್ಯೂಟ್ರಾನ್ ಚೈತನ್ಯವನ್ನು ಕಡಿಮೆ ಮಾಡುವುದಾಗಿ ಈ ಮೊದಲೇ ತಿಳಿದುಕೊಂಡಾಗಿದೆ. ಕೆಲವೊಂದು ಸಾರಿ ಕಡಿಮೆ ಚೈತನ್ಯದ ನ್ಯೂಟ್ರಾನ್‍ನ್ನು ಹೊರಬಿಡುವ ಬದಲು, ಮಂದಕಾರಕವು ಆ ನ್ಯೂಟ್ರಾನ್‍ನ್ನು ವಿಕಿರಣಶೀಲ ಗ್ರಹಣ ಮಾಡಿಕೊಂಡುಬಿಡಬಹುದು. ಹೀಗೆ ಗ್ರಹಿಸಲ್ಪಟ್ಟ ನ್ಯೂಟ್ರಾನ್ ಮುಂದಿನ ಸರಣಿಯ ವಿದಳನ ಕ್ರಿಯೆಗೆ ಲಭ್ಯವಿರುವದಿಲ್ಲ. ಸರಣಿ ಪ್ರಕ್ರಿಯಯಲ್ಲಿ, ಪ್ರತಿ ಪೀಳಿಗೆಯ ವಿದಳನದಲ್ಲಿರುವ ನ್ಯೂಟ್ರಾನ್‍ಗಳ ಸಂಖ್ಯೆಯಷ್ಟೇ ಸಂಖ್ಯೆಯ ನ್ಯೂಟ್ರಾನ್‍ಗಳು ಮುಂದಿನ ಪೀಳಿಗೆಯ ವಿದಳನದಲ್ಲೂ ಲಭ್ಯವಿರದಿದ್ದರೆ, ಸರಣಿ ಪೂರ್ಣವಾಗುವದಿಲ್ಲ. ಹಾಗಾಗಿ ಮಂದಕಾರಕದ ಆಯ್ಕೆ ಒಂದು ಅತ್ಯಂತ ಪ್ರಮುಖ ಸವಾಲನ್ನು ಒಡ್ಡು ತ್ತದೆ. ಮಂದಗೊಳಿಸುವಿಕೆ ಹಾಗೂ ಗ್ರಹಣ ಕ್ರಿಯೆಯ ಅನುಪಾತ ಮಂದಕಾರದ ಪ್ರಕಾರದ ಮೇಲೆ ನಿಶ್ಚಿತಗೊಳ್ಳುತ್ತದೆ. ಸಾಮಾನ್ಯವಾಗಿ ನೀರು, ಭಾರಜಲ ಜಲಜನಕದ ಬೇರೆ ಐಸೋಟೋಪ್‍ನ ಜೊತೆಗೆ ಆಮ್ಲಜನಕ ಸೇರಿ ಉಂಟಾದ ನೀರು ಮತ್ತು ಗ್ರಾಫೈಟ್‍ನ್ನು ಮಂದಕಾರಕಗಳನ್ನಾಗಿ ಉಪಯೋಗಿಸುತ್ತಾರೆ. ನೀರು ಅತ್ಯಂತ ಸುಲಭವಾಗಿ ಸಿಗುವ ಮತ್ತು ಅತ್ಯುತ್ತಮ ಮಂದಕಾರಕ. ಆದರೆ, ನೀರಿನ ನ್ಯೂಟ್ರಾನ್ ಗ್ರಹಣದ ಅನುಪಾತ ತುಂಬಾ ಜಾಸ್ತಿ. ನೈಸರ್ಗಿಕವಾಗಿ ಸಿಗುವ ಯುರೇನಿಯಮ್‍ ವಿದಳನದಲ್ಲಿ ನ್ಯೂಟ್ರಾನ್‍ಗಳ ಸಾಂದ್ರತೆ Neutran density ಕಡಿಮೆಯಾಗಿರುತ್ತದೆ. ಹೀಗಾಗಿ ಸಾಮಾನ್ಯ ಜಲ-ನೈಸರ್ಗಿಕ ಯುರೇನಿಯಮ್‍ಗಳ ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಸರಣಿ ಪ್ರಕ್ರಿಯೆ ಸಾಧ್ಯವಾಗುವದಿಲ್ಲ. ಆಗ ಯುರೇನಿಯಮ್‍ನ ಪುಷ್ಟೀಕರಣವನ್ನು ಮಾಡಬೇಕಾಗುತ್ತದೆ. ಈ ಮೊದಲೆ ತಿಳಿದುಕೊಂಡಂತೆ, ನೈಸರ್ಗಿಕ ಯುರೇನಿಯಮ್‍ನಲ್ಲಿ 235 Uನ ಪ್ರಮಾಣ ಸುಮಾರು ೦.೭೧%. ಕೆಲವು ಉನ್ನತ ತಂತ್ರಜ್ಞಾನದ ನೆರವಿನಿಂದ 235 Uನ ಪ್ರಮಾಣವನ್ನು ಹೆಚ್ಚಿಸಲಾಗುತ್ತದೆ. ಈ ಕ್ರಿಯೆಗೆ ಪುಷ್ಟೀಕರಣ ಎನ್ನುತ್ತಾರೆ. ಹೀಗೆ ಪುಷ್ಟೀಕರಿಸಿದ ಯುರೇನಿಯಮ್‍ನ್ನು ಸಾಮಾನ್ಯ ಜಲದೊಂದಿಗೆ ಉಪಯೋಗಿಸಿ ರಿಯಾಕ್ಟರುಗಳನ್ನು ನಡೆಸುತ್ತಾರೆ. ಆದರೆ ಪುಷ್ಟೀಕರಣದ ತಂತ್ರಜ್ಞಾನವು ಬಹಳ ಕ್ಲಿಷ್ಟವಾಗಿದ್ದು ಕೆಲವೇ ಕೆಲವು ದೇಶಗಳು ಇದರಲ್ಲಿ ಪರಿಣಿತಿಯನ್ನು ಸಾಧಿಸಿವೆ. ಗ್ರಾಫೈಟ್‍ನ್ನು ಮಂದಕಾರಕವನ್ನಾಗಿ ಬಳಸಿದಾಗಲೂ ಪುಷ್ಟೀಕರಣವನ್ನು ಮಾಡಬೇಕಾಗುತ್ತದೆ. ಆದರೆ ನೈಸರ್ಗಿಕ ಯುರೇನಿಯಮ್‍ನ್ನು ಭಾರಜಲದೊಂದಿಗೆ ಬಳಸಿ ರಿಯಾಕ್ಟರುಗಳನ್ನು ನಡೆಸಬಹುದು. ಇಲ್ಲಿ ಕೂಡ ಭಾರಜಲವು ಒಂದು ದುಬಾರಿ ಹಾಗು ಕ್ಲಿಷ್ಟ ತಂತ್ರಜ್ಞಾನ. ಅಲ್ಲದೇ, ಭಾರಜಲದಿಂದಾಗಿ ವಿಕಿರಣದ ಪ್ರಮಾಣವೂ ಸ್ವಲ್ಪಮಟ್ಟಿಗೆ ಹೆಚ್ಚಾಗುತ್ತದೆ.



                                     

2.3. ಪರಮಾಣು ಇಂಧನ ಪ್ಲುಟೋನಿಯಮ್

ಪರಮಾಣು ರೂಪಾಂತರದ ಮುಖಾಂತರ ಬೇರೆ ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಹುಟ್ಟಿಸಲಾದ ಪ್ಲುಟೋನಿಯಮ್‍ನ್ನೂ ರಾಸಾಯನಿಕ ಚಿನ್ಹೆ: Puಕೂಡ ಇಂಧನವನ್ನಾಗಿ ಬಳಸಬಹುದು. ಪ್ಲುಟೋನಿಯಮ್‍ನಲ್ಲಿ ಎರಡು ಐಸೋಟೋಪ್‍ಗಳಿವೆ. 238 Pu ಮತ್ತು 239 Pu. ಇವುಗಳಲ್ಲಿ 239 Puನ್ನು ವಿದಳನ ಕ್ರಿಯೆಗೆ ಇಂಧನವನ್ನಾಗಿ ಉಪಯೋಗಿಸುತ್ತಾರೆ. ಪ್ಲುಟೋನಿಯಮ್ ವಿದಳನಕ್ಕೆ ಹೆಚ್ಚಿನ ಶಕ್ತಿಯ ನ್ಯೂಟ್ರಾನ್‍ಗಳನ್ನೇ ಉಪಯೋಗಿಸಬಹುದು. ಹೀಗಾಗಿ ಈ ಇಂಧನವನ್ನು ಬಳಸುವ ರಿಯಾಕ್ಟರುಗಳಲ್ಲಿ ಯಾವುದೇ ಮಂದಕಾರಕದ ಅವಶ್ಯಕತೆಯಿರುವದಿಲ್ಲ.